
D e p t  o f  C S E ,  M B I T S   Page 1 
 

MODULE 4 

MEMORY MANAGEMENT 

INTRODUCTION 

 CPU can load instructions only from memory, so any 

programs to run must be stored there.  

 General-purpose computers run most of their programs 

from rewriteable memory, called main memory (also 

called Random Access Memory or RAM). 

 Memory provides an array of words. Each word has its 

own address.(A numerical number) 

 The load instruction moves a word from main memory to 

an internal register within the CPU, whereas the store 

instruction moves the content of a register to main 

memory. 

 A typical instruction-execution cycle consist of 5 steps: 

1. First fetches an instruction from memory and stores 

that instruction in the instruction register (IR) 

2. The instruction is then decoded  

3. May cause operands to be fetched from memory and 

stored in some internal register.  

4. The instruction on the operands has been executed 

5. The result may be stored back in memory. 

 The wide variety of storage systems in a computer system 

can be organized in a hierarchy according to speed and 

cost. The higher levels are expensive, but they are fast 



D e p t  o f  C S E ,  M B I T S   Page 2 
 

 

 

BASIC HARDWARE 

 Main memory and the registers built into the processor 

itself are the only storage that the CPU can access directly. 

 If the data are not in memory, they must be moved there 

before the CPU can operate on them. 

 Registers that are built into the CPU are generally 

accessible within one cycle of the CPU clock. CPUs can 

perform simple operations on register contents at the 

rate of one or more operations per clock tick  

 The same cannot be said of main memory, which is 

accessed via a transaction on the memory bus. Completing 

a memory access may take many cycles of the CPU 

clock.  

 In such cases, the processor normally needs to stall (wait) 



D e p t  o f  C S E ,  M B I T S   Page 3 
 

 The remedy is to add fast memory between the CPU and 

main memory. A memory buffer used to accommodate a 

speed differential is called a cache. 

 We also must ensure to protect the OS from access by user 

processes and to protect user processes from one another. 

 We first need to make sure that each process has a 

separate memory space. 

 We can provide this protection by using two registers, a 

base register and a limit register. 

 The base register holds the smallest legal physical memory 

address; the limit register specifies the size of the range. 

For example, if the base register holds 3000 and the limit 

register is 1200, then the program can legally access all 

addresses from 3000 through 4199 (inclusive). 

 Any attempt by a program executing in user mode to 

access OS memory or other users' memory results in a trap 

to the OS, which treats the attempt as a fatal error 

 This scheme prevents a user program from (accidentally or 

deliberately) modifying the code or data structures of either 

the OS or other users. 

 Only the OS can load the base and limit registers. 



D e p t  o f  C S E ,  M B I T S   Page 4 
 

 

ADDRESS BINDING 
 

 Usually, a program resides on a disk as a binary executable 

file.  

 To be executed, the program must be brought into memory 

and placed within a process. 

 The processes on the disk that are waiting to be brought 

into memory for execution form the input queue 

 The normal procedure is to select one of the processes in 

the input queue and to load that process into memory. 

 A user program will go through several steps before being 

executed  



D e p t  o f  C S E ,  M B I T S   Page 5 
 

 

 Addresses may be represented in different ways during 

these steps.  



D e p t  o f  C S E ,  M B I T S   Page 6 
 

 Addresses in the source program are generally symbolic 

(such as count). It should bind with correct memory 

address 

 Binding can be done in 3 situations 

1. Compile time. If we know at compile time where the 

process will reside in memory, then absolute code can be 

generated. If, at some later time, the starting location 

changes, then it will be necessary to recompile this code. 

2. Load time. If it is not known at compile time where the 

process will reside in memory, then the compiler must 

generate relocatable code. In this case, final binding is 

delayed until load time. If the starting address changes, we 

need only reload the user code 

3. Execution time. If the process can be moved during its 

execution from one memory segment to another, then 

binding must be delayed until run time. Special hardware 

must be available for this scheme to work. Most general-

purpose OS use this method. 

 

LOGICAL VERSUS PHYSICAL ADDRESS SPACE 
 

 An address generated by the CPU is called Logical 

address whereas an address seen by the memory unit is 

called Physical address. 

 Physical address is stored in a special register named 

memory address register (MAR). 



D e p t  o f  C S E ,  M B I T S   Page 7 
 

 The compile-time and load-time address-binding methods 

generate identical logical and physical addresses. However, 

the execution-time address binding scheme results in 

differing logical and physical addresses 

 Logical address is also called virtual address 

 The set of all logical addresses generated by a program is a 

logical address space. The set of all physical addresses 

corresponding to these logical addresses is a physical 

address space. 

 The run-time mapping from virtual to physical addresses is 

done by a hardware device called the Memory 

Management unit (MMU) 

 

 The base register is now called a relocation register 



D e p t  o f  C S E ,  M B I T S   Page 8 
 

 The value in the relocation register is added to every 

address generated by a user process at the time the address 

is sent to memory  

 Example, if the base is at 14000, then an attempt by the 

user to address location 0 is dynamically relocated to 

location 14000; an access to location 346 is mapped to 

location 14346. 

 The user program deals with logical addresses. The 

memory-mapping hardware converts logical addresses into 

physical addresses. 

 

DYNAMIC LOADING 

 All data of a process to be in physical memory for the 

process to execute. The size of a process has thus been 

limited to the size of physical memory.  

 To obtain better memory-space utilization, we can use 

dynamic loading.  

 With dynamic loading, a routine is not loaded until it is 

called. All routines are kept on disk in a relocatable load 

format. The main program is loaded into memory and is 

executed.  

 When a routine needs to call another routine, the calling 

routine first checks to see whether the other routine has 

been loaded. If it has not, the relocatable linking loader is 

called to load the desired routine into memory and to 



D e p t  o f  C S E ,  M B I T S   Page 9 
 

update the program's address tables to reflect this change. 

Then control is passed to the newly loaded routine. 

 The advantage of dynamic loading is that an unused 

routine is never loaded.  

 This method is particularly useful when large amounts of 

code are needed to handle in infrequently occurring 

cases 

 Dynamic loading does not require special support from 

the OS. It is the responsibility of the users to design their 

programs  

 

DYNAMIC LINKING AND SHARED LIBRARIES 
 

 Some OS support only static linking, in which system 

libraries are treated like any other object module and 

are combined by the loader into the binary program 

image. 

 In dynamic linking, the linking is postponed until 

execution time. This feature is usually used with system 

libraries. 

 Without this facility, each program on a system must 

include a copy of its library (or at least the routines 

referenced by the program) in the executable image. This 

requirement wastes both disk space and main memory. 

 With dynamic linking, a stub is included in the image for 

each library routine reference.  



D e p t  o f  C S E ,  M B I T S   Page 10 
 

 The stub is a small piece of code that indicates how to 

locate the appropriate memory-resident library routine 

or how to load the library if the routine is not already 

present. 

 The stub replaces itself with the address of the routine and 

executes the routine. Thus, the next time that particular 

code segment is reached, the library routine is executed 

directly, incurring no cost for dynamic linking. 

 A library may be replaced by a new version, and all 

programs that reference the library will automatically 

use the new version.  

 Without dynamic linking, all such programs would need to 

be relinked to gain access to the new library. 

 Unlike dynamic loading, dynamic linking generally 

requires help from the OS.  

 

SWAPPING 

 A process must be in memory to be executed. A process, 

however, can be swapped temporarily out of memory to a 

backing store and then brought back into memory for 

continued execution. 

 This is called swap in and swap out 

 Swapping is needed in many situations, especially 

during context switch in multi-programming. 

 Example, assume round-robin CPU-scheduling algorithm. 

When a quantum expires, the memory manager will start to 



D e p t  o f  C S E ,  M B I T S   Page 11 
 

swap out the process that just finished and to swap another 

process into the memory space that has been freed 

 It is also used for priority-based scheduling algorithms. If a 

higher-priority process arrives and wants service, the 

memory manager can swap out the lower-priority process 

and then load and execute the higher-priority process. 

When the higher-priority process finishes, the lower-

priority process can be swapped back in and continued. 

This variant of swapping is sometimes called roll out and 

roll in 

 

 Normally, a process that is swapped out will be swapped 

back into the same memory space it occupied previously. 



D e p t  o f  C S E ,  M B I T S   Page 12 
 

 If address binding is done at compile time or load time, 

then the process cannot be easily moved to a different 

location.  

 If execution-time binding is being used, however, then a 

process can be swapped into a different memory space, 

because the physical addresses are computed during 

execution time. 

 The backing store is commonly a fast disk. It must be 

large enough to accommodate copies of all memory images 

for all users, and it must provide direct access to these 

memory images.  

 The system maintains a ready queue consisting of all 

processes whose memory images are on the backing 

store or in memory and are ready to run. 

 The major part of the swap time is transfer time between 

main memory and backing store. The total transfer time is 

directly proportional to the amount of memory swapped.  

 It would be useful to know exactly how much memory a 

user process is presently using, not simply how much it 

might be using. 

 Then we would need to swap only what is actually used, 

reducing swap time. 

 For this method to be effective, the user must keep the 

system informed of any changes in memory requirements. 

Thus, a process with dynamic memory requirements will 



D e p t  o f  C S E ,  M B I T S   Page 13 
 

need to issue system calls (request memory and release 

memory) to inform the OS of its changing memory needs. 

 A process may be waiting for an I/0 operation when we 

want to swap that process to free up memory.  

 There are two solutions to this problem:  

1. Never swap a process with pending I/0 

2. Execute I/0 operations only into OS buffers. Transfers 

between OS buffers and process memory occur only when 

the process is swapped in. 

 

CONTIGUOUS MEMORY ALLOCATION 

 The memory is usually divided into two partitions: one 

for the resident OS and one for the user processes.  

 We can place the OS in either low memory or high 

memory. Programmers usually place the OS in low 

memory. 

 We need to consider how to allocate available memory to 

the processes that are in the input queue waiting to be 

brought into memory. 

 Each process is contained in a single contiguous section of 

memory. 
 

Memory Mapping and Protection 

 We can provide these features by using a relocation 

register together with a limit register 



D e p t  o f  C S E ,  M B I T S   Page 14 
 

 

 Each logical address must be less than the limit register; 

the MMU maps the logical address dynamically by adding 

the value in the relocation register. This mapped address is 

sent to memory 

 Because every address generated by a CPU is checked 

against these registers, we can protect both the OS and the 

other users' programs and data from being modified by this 

running process. 

 The relocation-register scheme provides an effective way 

to allow the OS size to change dynamically. 

 Eg: If a device driver is not commonly used, we do not 

want to keep the code and data in memory, as we might be 

able to use that space for other purposes. Such code is 

sometimes called transient OS code; it comes and goes as 

needed. So the size of OS may vary. 

 



D e p t  o f  C S E ,  M B I T S   Page 15 
 

Memory Allocation 

 Can be done in 2 ways 

1. Fixed sized partitions 

2. Variable sized partitions 

 Simplest method for allocating memory is to divide 

memory into several fixed-sized partitions 

 Each partition may contain exactly one process. Thus, the 

degree of multiprogramming is bound by the number of 

partitions.  

 When a partition is free, a process is selected from the 

input queue and is loaded into the free partition.  

 When the process terminates, the partition becomes 

available for another process. 

 In the variable partition scheme, the OS keeps a table 

indicating which parts of memory are available and which 

are occupied. 

 Initially, all memory is available for user processes and is 

considered one large block of available memory a hole.  

 After allocating memory for a number of processes, a set 

of holes will be there. 

 We have a list of available block sizes and an input queue. 

The OS can order the input queue according to a 

scheduling algorithm.  

 Memory is allocated to processes until the memory 

requirements of the next process cannot be satisfied -



D e p t  o f  C S E ,  M B I T S   Page 16 
 

that is, no available block of memory (or hole) is large 

enough to hold that process. 

 The OS can then wait until a large enough block is 

available, or it can skip down the input queue to see 

whether the smaller memory requirements of some 

other process can be met. 

 The memory blocks available comprise a set of holes of 

various sizes scattered throughout memory.  

 When a process arrives and needs memory, the system 

searches the set for a hole that is large enough for this 

process.  

 If the hole is too large, it is split into two parts.  

 One part is allocated to the arriving process; the other is 

returned to the set of holes.  

 When a process terminates, it releases its block of memory, 

which is then placed back in the set of holes.  

 If the new hole is adjacent to other holes, these adjacent 

holes are merged to form one larger hole. 

 This is called dynamic storage allocation problem which 

concerns how to satisfy a request of size n from a list of 

free holes 

 3 strategies are commonly used to select a free hole from 

the set of available holes. 

1. First fit. Allocate the first hole that is big enough. 

Searching can start either at the beginning of the set of 

holes or at the location where the previous first-fit 



D e p t  o f  C S E ,  M B I T S   Page 17 
 

search ended. We can stop searching as soon as we 

find a free hole that is large enough. 

2. Best fit. Allocate the smallest hole that is big 

enough. We must search the entire list, unless the list 

is ordered by size. This strategy produces the smallest 

leftover hole. 

3. Worst fit. Allocate the largest hole. Again, we must 

search the entire list, unless it is sorted by size.  

 Simulations have shown that both first fit and best fit are 

better than worst fit in terms of decreasing time and 

storage utilization. Neither first fit nor best fit is clearly 

better than the other in terms of storage utilization, but 

first fit is generally faster. 

 

Fragmentation 
 

 Wastage of memory is called fragmentation 

 2 types 

1. External fragmentation 

2. Internal Fragmentation 

 Both the first-fit and best-fit strategies for memory 

allocation suffer from external fragmentation.  

 As processes are loaded and removed from memory, the 

free memory space is broken into little pieces.  

 External fragmentation exists when there is enough 

total memory space to satisfy a request but the 

available spaces are not contiguous; storage is 



D e p t  o f  C S E ,  M B I T S   Page 18 
 

fragmented into a large number of small holes. This 

fragmentation problem can be severe.  

 In the worst case, we could have a block of free (or 

wasted) memory between every two processes. If all these 

small pieces of memory were in one big free block instead, 

we might be able to run several more processes. 

 Whether we are using the first-fit or best-fit strategy can 

affect the amount of fragmentation. 

 Depending on the total amount of memory storage and the 

average process size, external fragmentation may be a 

minor or a major problem.  

 Statistical analysis of first fit reveals that, even with 

some optimization, given N allocated blocks, another 

0.5 N blocks will be lost to fragmentation. That is, one-

third of memory may be unusable! This property is 

known as the 50 percent rule. 

 Internal fragmentation may also occur. 

 Consider a multiple-partition allocation scheme with a hole 

of 18,464 bytes. Suppose that the next process requests 

18,462 bytes. If we allocate exactly the requested block, 

we are left with a hole of 2 bytes.  

 2 bytes may not be enough to hold any other process and 

thus causes wastage. 

 The memory allocated to a process may be slightly 

larger than the requested memory. The difference 



D e p t  o f  C S E ,  M B I T S   Page 19 
 

between these two numbers is internal fragmentation - 

unused memory that is internal to a partition. 

 One solution to the problem of external fragmentation 

is compaction.  

 The goal is to shuffle the memory contents so as to place 

all free memory together in one large block. 

Compaction is not always possible, however. If 

relocation is static and is done at compile or load time, 

compaction cannot be done; compaction is possible only 

if relocation is dynamic and is done at execution time.  

 If addresses are relocated dynamically, relocation requires 

only moving the program and data and then changing the 

base register to reflect the new base address.  

 The simplest compaction algorithm is to move all 

processes toward one end of memory; all holes move in the 

other direction, producing one large hole of available 

memory. This scheme can be expensive. 

 Another possible solution to the external-fragmentation 

problem is to permit the logical address space of the 

processes to be noncontiguous, thus allowing a process to 

be allocated physical memory wherever such memory is 

available.  

 Two techniques achieve this solution: paging and 

segmentation 

 

 



D e p t  o f  C S E ,  M B I T S   Page 20 
 

PAGING 
 

 Paging is a memory-management scheme that permits the 

physical address space of a process to be non-

contiguous. 

 Paging avoids external fragmentation and the need for 

compaction. 

 When some code fragments or data residing in main 

memory need to be swapped out, space must be found on 

the backing store.  

 The backing store also has the same fragmentation 

problems same as that of main memory, but since access 

is much slower, compaction is impossible. 

 

Basic Method 
 

 The basic method for implementing paging involves 

breaking physical memory into fixed-sized blocks called 

frames and breaking logical memory into blocks of the 

same size called pages.  

 When a process is to be executed, its pages are loaded into 

any available memory frames  

 The backing store also is divided into fixed-sized blocks 

that are of the same size as the memory frames. 

 A page table is used to keep track of the pages stored in 

frames. 



D e p t  o f  C S E ,  M B I T S   Page 21 
 

 

 Every address generated by the CPU is divided into two 

parts: 

1. Page number (p) 

2. Page offset (d) 

 The page number is used as an index into a page table. The 

page table contains the base address of each page in 

physical memory. This base address is combined with the 

page offset to define the physical memory address that is 

sent to the memory unit.   



D e p t  o f  C S E ,  M B I T S   Page 22 
 

 

 The size of a page is typically a power of 2 (Eg 512KB or 

1024KB etc) depending on the computer architecture. 

 If the size of the logical address space is 2
m, and a page 

size is 2
n addressing units, then the high-order m- n bits 

of a logical address designate the page number, and the 

n low-order bits designate the page offset. 

 

 For example, consider the memory in following figure 

 



D e p t  o f  C S E ,  M B I T S   Page 23 
 

 

 Here m = 4 (logical address space is 16) and n = 2 (page 

size is 4). Physical memory is of 32 bytes (8 frames) 

 Logical address 0 is page 0, offset 0. Indexing into the 

page table, we find that page 0 is in frame 5. Thus, logical 

address 0 maps to physical address (5 x 4) + 0 = 20 

 Logical address 3 (page 0, offset 3) maps to physical 

address (5 x 4) + 3 = 23 



D e p t  o f  C S E ,  M B I T S   Page 24 
 

 Logical address 4 is page 1, offset 0; according to the page 

table, page 1 is mapped to frame 6. Thus, logical address 4 

maps to physical address ( 6 x 4) + 0 = 24 

 Logical address 13 maps to physical address 9. 

 If the size of the logical address space is 2
m, and a page 

size is 2
n addressing units, then the high-order m- n bits 

of a logical address designate the page number, and the 

n low-order bits designate the page offset. 

 Eg: Logical address = 13 (Binary 1101).  

 In our example, m-n bits (4-2=2 bits) are used for page and 

n bits (2 bits) for offset.  

 We can easily find out the page number and offset 

value. Page = 3 (binary 11). Offset = 1 (Binary 01)  

 Paging itself is a form of dynamic relocation. Every logical 

address is bound by the paging hardware to some physical 

address. Using paging is similar to using a table of base (or 

relocation) registers, one for each frame of memory. 

 In paging scheme, we have no external fragmentation: 

any free frame can be allocated to a process that needs it.  

 However, we may have some internal fragmentation. 

 The last frame allocated may not be completely full.  

 For example, if page size is 2,048 bytes, a process of 

72,766 bytes will need 35 pages plus 1,086 bytes. It will be 

allocated 36 frames, resulting in internal fragmentation of 

2,048 - 1,086 = 962 bytes.  



D e p t  o f  C S E ,  M B I T S   Page 25 
 

 In the worst case, a process would need n pages plus 1 

byte. It would be allocated n + 1 frames, resulting in 

internal fragmentation of almost an entire frame 

 This consideration suggests that small page sizes are 

desirable. However, overhead is involved in each page-

table entry, and this overhead is reduced as the size of the 

pages increases. 

 Today, pages typically are between 4 KB and 8 KB in size 

and some systems support even larger page sizes. 

 Some OS even support multiple page sizes based on the 

application. Eg: Solaris 

 OS must be aware of the allocation details of physical 

memory-which frames are allocated, which frames are 

available, how many total frames there are, and so on. This 

information is generally kept in a data structure called a 

frame table 

 The frame table has one entry for each physical page 

frame, indicating whether the frame is free or allocated 

and, if it is allocated, to which page of which process  

 In every memory access, the logical address is converted 

into physical address through paging. Paging therefore 

increases the context-switch time. 

 A pointer to the page table is stored in PCB of each process 

 

 

 



D e p t  o f  C S E ,  M B I T S   Page 26 
 

Hardware Support 
 

 The simplest method, the page table is implemented as a 

set of dedicated registers 

 These registers should be built with very high-speed logic 

to make the paging-address translation efficient. Every 

access to memory must go through the paging map, so 

efficiency is a major consideration. 

 This implementation is satisfactory if the page table is 

reasonably small 

 Some systems allow the page table to be very large, and 

then the page table is kept in main memory. It takes 

memory access for page table access also. 

 The standard solution to this problem is to use a special, 

small, fast lookup hardware cache, called a Translation 

Look-aside Buffer (TLB).  

 TLB is associative, high-speed cache memory. Each entry 

in the TLB consists of two parts: a key (or tag) and a value. 

When the associative memory is given with an item, the 

item is compared with all keys simultaneously. If the item 

is found, the corresponding value field is returned. The 

search is fast; the hardware is expensive.  

 The TLB contains only a few of the page-table entries. 

When a logical address is generated by the CPU, its page 

number is given to the TLB. If the page number is found 

(TLB hit), its frame number is immediately available and 

is used to access memory. If the page number is not in the 



D e p t  o f  C S E ,  M B I T S   Page 27 
 

TLB (TLB miss) a memory reference to the page table 

must be made. System adds the page number and frame 

number to the TLB, so that they will be found quickly 

on the next reference. If the TLB is already full of entries, 

the operating system must select one for replacement. 

Various replacement algorithms are there 

 The percentage of times that a particular page number is 

found in the TLB is called the hit ratio. Eg 80% 

 

 

 

 



D e p t  o f  C S E ,  M B I T S   Page 28 
 

Protection 
 

 User process is unable to access memory it does not 

own.  

 Also it should specify the set of operations permitted on 

a memory location 

 Protection bits are added with each frame. Normally, 

these bits are kept in the page table. One bit can define a 

page to be read-write or read-only. Eg: 0 – read only. 1 – 

read write 

 An attempt to write to a read-only page causes a hardware 

trap 

 One additional bit is generally attached to each entry in the 

page table called valid – invalid bit 

 When this bit is set to "valid," the associated page is in the 

process's logical address space and is thus a legal (or valid) 

page. When the bit is set to "invalid" the page is not in the 

process's logical address space. 



D e p t  o f  C S E ,  M B I T S   Page 29 
 

 

 Any attempt to generate an address in pages 6 or 7 the 

computer will trap to operating system error 

 

Shared Pages 
 

 An advantage of paging is the possibility of sharing 

common code. 

 Consider a system that supports 40 users, each of whom 

executes a text editor. If the text editor consists of 150 KB 



D e p t  o f  C S E ,  M B I T S   Page 30 
 

of code and 50 KB of data space, we need 8,000 KB to 

support the 40 users. 

 Only one copy of the editor need be kept in physical 

memory. Each user's page table maps onto the same 

physical copy of the editor, but data pages are mapped onto 

different frames. Thus, to support 40 users, we need only 

one copy of the editor (150 KB), plus 40 copies of the 50 

KB of data space per user. The total space required is now 

2150 KB instead of 8,000 KB-a significant savings. 

 Other heavily used programs can also be shared - 

compilers, window systems, run-time libraries, database 

systems, and so on. 

 Some operating systems implement shared memory 

using shared pages. 
 



D e p t  o f  C S E ,  M B I T S   Page 31 
 

 

 


